Saturday, March 22, 2014 0 comments

Beberapa Rumus Fisika Lengkap/Mekanika fluida

Tekanan

 p = \frac {F} {A}
Keterangan:
  • p: Tekanan (N/m² atau dn/cm²)
  • F: Gaya (N atau dn)
  • A: Luas alas/penampang (m² atau cm²)
Satuan:
  • 1 Pa = 1 N/m² = 10-5 bar = 0,99 x 10-5 atm = 0,752 x 10-2 mmHg atau torr = 0,145 x 10-3 lb/in² (psi)
  • 1 torr= 1 mmHg

Tekanan hidrostatis

p_{\text{h}} = \rho\,\! \times g \times h
p_{\text{h}} = s \times h
Keterangan:
  • ph: Tekanan hidrostatis (N/m² atau dn/cm²)
  • h: jarak ke permukaan zat cair (m atau cm)
  • s: berat jenis zat cair (N/m³ atau dn/cm³)
  • ρ: massa jenis zat cair (kg/m³ atau g/cm³)
  • g: gravitasi (m/s² atau cm/s²)

Tekanan mutlak dan tekanan gauge

Tekanan gauge: selisih antara tekanan yang tidak diketahui dengan tekanan udara luar.
Tekanan mutlak = tekanan gauge + tekanan atmosfer
p = p_{\text{gauge}} + p_{\text{atm}}

Tekanan mutlak pada kedalaman zat cair

p_{\text{h}} = p_{\text{0}} + \rho\,\! \times g \times h
Keterangan:
  • p0: tekanan udara luar (1 atm = 76 cmHg = 1,01 x 105 Pa)

Hukum Pascal

Tekanan yang diberikan pada zat cair dalam ruang tertutup akan diteruskan sama besar ke segala arah.
 \frac {F_{\text{2}}} {A_{\text{2}}} = \frac {F_{\text{1}}} {A_{\text{1}}}
Keterangan:
  • F1: Gaya tekan pada pengisap 1
  • F2: Gaya tekan pada pengisap 2
  • A1: Luas penampang pada pengisap 1
  • A2: Luas penampang pada pengisap 2
Jika yang diketahui adalah besar diameternya, maka:  {F_{\text{2}}} = (\frac {D_{2}} {D_{1}})^2 \times F_{1}

Gaya apung (Hukum Archimedes)

Gaya apung adalah selisih antara berat benda di udara dengan berat benda dalam zat cair.
 F_{a} = M_{f} \times g
 F_{a} = \rho_{f} \times V_{bf} \times g
Keterangan:
  • Fa: gaya apung
  • Mf: massa zat cair yang dipindahkan oleh benda
  • g: gravitasi bumi
  • ρf: massa jenis zat cair
  • Vbf: volume benda yang tercelup dalam zat cair

Mengapung, tenggelam, dan melayang

Syarat benda mengapung:  \rho_b campuran <\rho_f
Syarat benda melayang:  \rho_b campuran =\rho_f

Syarat benda tenggelam:  \rho_b campuran >\rho_f
0 comments

LARUTAN PENYANGGA

Sifat-sifat larutan penyangga

Bila ke dalam air ditambahkan asam kuat atau basa kuat maka pH-nya akan berubah secara drastis. Misalnya, ke dalam 5 ml air ditambahkan 17 tetes larutan HCl 0,1 M, maka pH air akan berubah dari 7 menjadi sekitar 2. Bila ke dalam larutan tersebut kemudian ditambahkan larutan NaOH 0,1 M sebanyak 19 tetes, maka pH larutan tersebut akan melonjak sekitar 11. Adakah larutan yang pH-nya tidak berubah secara drastis bila ditambah sedikit asam kuat, basa kuat atau diencerkan? Perhatikan percobaan berikut dan buktikan di laboratorium!
Nah, dari bagan di atas, kita dapat menyimpulkan 3 hal tentang sifat-sifat larutan penyangga, yaitu dapat mempertahankan pH walaupun:
  1. ditambah sedikit asam kuat.
  2. ditambah sedikit basa kuat.
  3. diencerkan.

Komposisi Larutan Penyangga

Larutan penyangga terbentuk dari campuran asam/ basa dengan pasangan basa/ asam konjugasi yang biasa diperoleh dari garamnya. Namun asam/basa yang mana? Kuat atau lemah? Perhatikan peta konsep berikut!
Sekarang perhatikan Gambar 1 berikut!
Diketahui, zat X, Y, dan Z adalah larutan penyangga.
Berdasarkan Gambar 2:
Zat X adalah larutan penyangga basa , zat Y adalah larutan penyangga asam , dan zat Z adalah larutan penyangga basa.
Jadi, ada 2 jenis larutan penyangga yaitu:
  1. larutan penyangga asam yang terdiri dari campuran asam lemah dan basa konjugasinya.
  2. larutan penyangga basa yang terdiri dari campuran basa lemah dan asam konjugasinya.
Larutan penyangga dapat dibuat secara langsung dan secara tidak langsung. Hal ini tergantung dari sumber asam konjugasi/basa konjugasi dari asam lemah/ basa lemahnya.
Perhatikan peta konsep berikut!
Perhatikanlah Gambar 3 berikut!
Berdasarkan Gambar 3, jika larutan penyangga terbentuk dengan cara tersebut maka larutan penyangga dinamakan dibuat secara langsung.
Perhatikanlah Gambar 4 berikut!
Berdasarkan Gambar 4, jika larutan penyangga terbentuk dengan cara tersebut maka larutan penyangga dinamakan dibuat secara tidak langsung  . Setiap reaksi asam lemah dengan basa kuat atau basa lemah dengan asam kuat akan selalu menghasilkan larutan penyangga, asalkan konsentrasi asam lemah/basa lemah harus lebih besar dari pada konsentrasi basa kuat/asam kuat.
Perhatikan Gambar 5 berikut untuk menjelaskan bagaimana reaksi asam lemah dengan basa kuat menghasilkan larutan penyangga!
Berdasarkan keterangan dapat disimpulkan:
Selain campuran asam lemah dengan garamnya / basa lemah dengan garamnya, suatu larutan penyangga juga dapat dibuat dengan mencampurkan asam lemah  dengan basa kuat atau basa lemah dengan asam kuat Asalkan konsentrasi yang lemah harus lebih besar daripada yang kuat.

Prinsip Kerja Larutan Penyangga

Larutan penyangga mempertahankan pH berdasarkan prinsip kesetimbangan. Anda masih ingat apa yang mempengaruhi nilai pH?
Yaa…benar! Konsentrasi H+ untuk larutan yang bersifat asam dan konsentrasi OH- untuk larutan yang bersifat basa!!
Bagaimana nilai pH jika konsentrasi H+ dan OH- dalam larutan adalah tetap? Yaa..anda benar lagi! Nilai pH juga akan tetap!!
Nah..sekarang anda akan mempelajari bagaimana prinsp kerja larutan penyangga dalam mempertahankan pH! Konsentrasi!!
1.     Prinsip Kerja Larutan Penyangga Asam
(Misal: HNO2/NO2- yang dibuat dari campuran HNO2 dengan NaNO2)
Perhatikanlah gambar berikut!
a.     Apabila ditambahkan sedikit asam kuat (Misal: HCl)
Berdasarkan Gambar 6a,  Larutan penyangga HNO2/NO2- dapat dibuat dari campuran HNO2 dan NaNO2. Berarti dalam larutan ini terkandung molekul HNO2, ion H+, Na+ dan NO2-. Penambahan sedikit asam kuat akan menambah konsentrasi H+ dalam larutan (6b), namun kelebihan ini dinetralisasi oleh NO2-, membentuk HNO2 sehingga kesetimbangan bergeser ke arah HNO2. Hal ini membuat jumlah H+ dalam larutan menjadi tetap. Akibatnya (6c) nilai pH tetap.
b. Apabila ditambahkan sedikit basa kuat (Misal: NaOH)
Berdasarkan  Gambar 7b,  penambahan sedikit basa kuat akan memunculkan ion baru dalam larutan penyangga HNO2/NO2-  yaitu OH-, namun ion tersebut dinetralisasi oleh HNO2, membentuk NO2- sehingga kesetimbangan bergeser ke arah NO2-. Hal ini membuat OH- tidak mengganggu H+ dalam larutan. Akibatnya (7c) nilai pH tetap.
c. Apabila dilakukan pengenceran dengan H2O
 
Berdasarkan  Gambar 8, jika dilakukan pengenceran dengan H2O maka derajat ionisasi (α) asam lemah akan naik (Hukum Pengenceran Ostwald) yang berarti menambah jumlah ion H+ dan NO2- dari ionisasi asam lemah (8b). Akan tetapi karena volume larutan juga bertambah maka penambahan konsentrasi H+ menjadi tidak berarti. Akibatnya (8c) nilai pH tetap.
Berdasarkan keterangan di atas, dapat disimpulkan prinsip kerja larutan penyangga asam dalam mempertahankan pH adalah sebagai berikut:
  1. Setiap penambahan Hakan dinetralisasi oleh basa konjugasi.
  2. Setiap penambahan OH- akan dinetralisasi oleh asam lemah.
  3. Setiap pengenceran dengan H2O berarti memperbesar jumlah ion H+ dan basa konjugasi dari ionisasi asam lemah namun penambahan konsentrasi H+ menjadi tidak berarti karena volume larutan juga bertambah.
2. Prinsip Kerja Larutan Penyangga Basa
(Misal: NH3/NH4+ yang dibuat dari campuran NH4OH dengan NH4Cl)
 a.     Apabila ditambahkan sedikit asam kuat (Misal: HCl)
Berdasarkan Gambar 9a, Larutan penyangga NH3/NH4+ dapat dibuat dari campuran NH4OH(bentuk NH3 dalam air) dan NH4Cl. Berarti dalam larutan ini terkandung molekul NH4OH, ion NH4+, ion OH- dan Cl-. Penambahan sedikit asam kuat akan memunculkan ion baru dalam larutan (9b) yaitu H+, namun ion tersebut dinetralisasi oleh NH4OH, membentuk NH4 sehingga kesetimbangan bergeser ke arah NH4+. Hal ini membuat H+ tidak mengganggu OH- dalam larutan. Akibatnya (9c) nilai pH tetap.
b. Apabila ditambahkan sedikit basa kuat (Misal: NaOH)
Berdasarkan Gambar 10, Penambahan sedikit basa kuat akan menambah konsentrasi OH- dalam larutan, namun kelebihan ini dinetralisasi oleh NH4+, membentuk NH4OH sehingga kesetimbangan bergeser ke arah NH4OH. Hal ini membuat jumlah OH- dalam larutan menjadi tetap. Akibatnya (10c) nilai pH tetap.
c. Apabila dilakukan pengenceran dengan H2O
Berdasarkan Gambar 11, jika dilakukan pengenceran dengan H2O maka derajat ionisasi (α) basa lemah akan naik/turun*(29) (Hukum Pengenceran Ostwald) yang berarti menambah jumlah ion OHdan NH4+ dari ionisasi basa lemah (11b). Akan tetapi karena volume larutan juga bertambah maka penambahan konsentrasi OH- menjadi tidak berarti. Hal ini (11c) membuat nilai pH tetap.
Berdasarkan keterangan di atas, dapat disimpulkan prinsip kerja larutan penyangga basa dalam mempertahankan pH adalah sebagai berikut:
    1. Setiap penambahan H+akan dinetralisasi oleh basa lemah.
    2. Setiap penambahan OH- akan dinetralisasi oleh asam konjugasi.
    3. Setiap pengenceran dengan H2O berarti memperbesar jumlah ion OH- dan asam konjugasi dari ionisasi basa lemah, namun penambahan konsentrasi OH- menjadi tidak berarti karena volume larutan juga bertambah.

pH Larutan Penyangga

pH larutan penyangga tergantung oleh konsentrasi asam lemah/ basa lemah, konstanta kesetimbangan asam lemah/ basa lemah dan konsentrasi garamnya. Dalam suatu sistem larutan penyangga akan terdapat dua jenis reaksi yaitu reaksi kesetimbangan asam lemah/ basa lemah dan reaksi ionisasi garamnya.
1. Menghitung pH Larutan Penyangga Asam
Konstanta kesetimbangan asam lemah:
 
                                                                                         sehingga:
                                                                                 maka:
                                                                              dan diperoleh:
2. Menghitung pH Larutan Penyangga Basa
Konstanta kesetimbangan basa lemah:
                                                                                      sehingga:
                                                                               maka:
                                                          Sehingga diperoleh:

Manfaat Larutan Penyangga

Larutan penyangga sangat penting dalam kehidupan; misalnya dalam analisis kimia, biokimia, bakteriologi, zat warna, fotografi, dan industri kulit. Dalam bidang biokimia, kultur jaringan dan bakteri mengalami proses yang sangat sensitif terhadap perubahan pH. Darah dalam tubuh manusia mempunyai kisaran pH 7,35 sampai 7,45, dan apabila pH darah manusia di atas 7,8 akan menyebabkan organ tubuh manusia dapat rusak, sehingga harus dijaga kisaran pHnya dengan larutan penyangga.
  1. Darah Sebagai Larutan Penyangga
Ada beberapa faktor yang terlibat dalam pengendalian pH darah, diantaranya penyangga karbonat, penyangga hemoglobin dan penyangga fosfat.
a. Penyangga Karbonat
Penyangga karbonat berasal dari campuran asam karbonat (H 2 CO 3 ) dengan basa konjugasi bikarbonat (HCO 3 ).
H 2 CO 3 (aq) –> HCO 3(aq) + H + (aq)
Penyangga karbonat sangat berperan penting dalam mengontrol pH darah. Pelari maraton dapat mengalami kondisi asidosis, yaitu penurunan pH darah yang disebabkan oleh metabolisme yang tinggi sehingga meningkatkan produksi ion bikarbonat. Kondisi asidosis ini dapat mengakibatkan penyakit jantung, ginjal, diabetes miletus (penyakit gula) dan diare. Orang yang mendaki gunung tanpa oksigen tambahan dapat menderita alkalosis, yaitu peningkatan pH darah. Kadar oksigen yang sedikit di gunung dapat membuat para pendaki bernafas lebih cepat, sehingga gas karbondioksida yang dilepas terlalu banyak, padahal CO 2 dapat larut dalam air menghasilkan H 2 CO 3 . Hal ini mengakibatkan pH darah akan naik. Kondisi alkalosis dapat mengakibatkan hiperventilasi (bernafas terlalu berlebihan, kadang-kadang karena cemas dan histeris).
b. Penyangga Hemoglobin
Pada darah, terdapat hemoglobin yang dapat mengikat oksigen untuk selanjutnya dibawa ke seluruh sel tubuh. Reaksi kesetimbangan dari larutan penyangga oksi hemoglobin adalah:
HHb + O 2 (g) « HbO 2 - + H +
Asam hemoglobin ion aksi hemoglobin
Keberadaan oksigen pada reaksi di atas dapat memengaruhi konsentrasi ion H +, sehingga pH darah juga dipengaruhi olehnya. Pada reaksi di atas O 2 bersifat basa. Hemoglobin yang telah melepaskan O 2 dapat mengikat H + dan membentuk asam hemoglobin. Sehingga ion H + yang dilepaskan pada peruraian H 2 CO 3 merupakan asam yang diproduksi oleh CO 2 yang terlarut dalam air saat metabolisme.
c. Penyangga Fosfat
Pada cairan intra sel, kehadiran penyangga fosfat sangat penting dalam mengatur pH darah. Penyangga ini berasal dari campuran dihidrogen fosfat (H 2 PO 4 - ) dengan monohidrogen fosfat (HPO 3 2- ).
H 2 PO 4 - (aq) + H + (aq) –> H 2 PO 4(aq)
H 2 PO 4 - (aq) + OH - (aq) –> HPO 4 2- (aq) ) + H 2 O (aq)
Penyangga fosfat dapat mempertahankan pH darah 7,4. Penyangga di luar sel hanya sedikit jumlahnya, tetapi sangat penting untuk larutan penyangga urin.
2. Air Ludah sebagai Larutan Penyangga
Gigi dapat larut jika dimasukkan pada larutan asam yang kuat. Email gigi yang rusak dapat menyebabkan kuman masuk ke dalam gigi. Air ludah dapat mempertahankan pH pada mulut sekitar 6,8. Air liur mengandung larutan penyangga fosfat yang dapat menetralisir asam yang terbentuk dari fermentasi sisa-sisa makanan.
3. Menjaga keseimbangan pH tanaman.
Suatu metode penanaman dengan media selain tanah, biasanya ikerjakan dalam kamar kaca dengan menggunakan mendium air yang berisi zat hara, disebut dengan hidroponik . Setiap tanaman memiliki pH tertentu agar dapat tumbuh dengan baik. Oleh karena itu dibutuhkan larutan penyangga agar pH dapat dijaga.
4. Larutan Penyangga pada Obat-Obatan

Asam asetilsalisilat merupakan komponen utama dari tablet aspirin, merupakan obat penghilang rasa nyeri. Adanya asam pada aspirin dapat menyebabkan perubahan pH pada perut. Perubahan pH ini mengakibakan pembentukan hormon, untuk merangsang penggumpalan darah, terhambat; sehingga pendarahan tidak dapat dihindarkan. Oleh karena itu, pada aspirin ditambahkan MgO yang dapat mentransfer kelebihan asam.
Monday, March 17, 2014 0 comments

FLUIDA STATIK DAN DINAMIS

FLUIDA 
Fluida adalah zat yang dapat mengalir. Kata Fluida mencakup zat car, air dan gas karena kedua zat ini dapat mengalir, sebaliknya batu dan benda-benda keras atau seluruh zat padat tidak digolongkan kedalam fluida karena tidak bisa mengalir.
Susu, minyak pelumas, dan air merupakan contoh zat cair. dan Semua zat cair itu dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain. Selain zat cair, zat gas juga termasuk fluida. Zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain. 
Fluida merupakan salah satu aspek yang penting dalam kehidupan sehari-hari. Setiap hari manusia menghirupnya, meminumnya, terapung atau tenggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya dan kapal laut mengapung di atasnya. Demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang diminum dan udara yang dihirup juga bersirkulasi di dalam tubuh manusia setiap saat meskipun sering tidak disadari.

Fluida ini dapat kita bagi menjadi dua bagian yakni:
     1.  Fluida statis
2.  Fluida Dinamis

1. FLUIDA STATIS

Fluida Statis adalah fluida yang berada dalam fase tidak bergerak (diam) atau fluida dalam keadaan bergerak tetapi tak ada perbedaan kecepatan antar partikel fluida tersebut atau bisa dikatakan bahwa partikel-partikel fluida tersebut bergerak dengan kecepatan seragam sehingga tidak memiliki gaya geser. 
Contoh fenomena fluida statis dapat dibagi menjadi statis sederhana dan tidak sederhana. Contoh fluida yang diam secara sederhana adalah air di bak yang tidak dikenai gaya oleh gaya apapun, seperti gaya angin, panas, dan lain-lain yang mengakibatkan air tersebut bergerak. Contoh fluida statis yang tidak sederhana adalah air sungai yang memiliki kecepatan seragam pada tiap partikel di berbagai lapisan dari permukaan sampai dasar sungai.
Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg. Gaya ini tersebar merata pada seluruh permukaan dasar bejana. Selama cairan itu tidak mengalir (dalam keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah oleh akibat berat cairan dalam kolom tersebut.
Sifat- Sifat Fluida
Sifat fisis fluida dapat ditentukan dan dipahami lebih jelas saat fluida berada dalam keadaan diam (statis). Sifat-sifat fisis fluida statis ini di antaranya, massa jenis, tegangan permukaan, kapilaritas, dan viskositas.

2. FLUIDA DINAMIS

Pengertian Fluida Dinamis
Fluida dinamis adalah fluida (bisa berupa zat cair, gas) yang bergerak. Untuk memudahkan dalam mempelajari, fluida disini dianggap steady (mempunyai kecepatan yang konstan terhadap waktu), tak termampatkan (tidak mengalami perubahan volume), tidak kental, tidak turbulen (tidak mengalami putaran-putaran).

Dalam kehidupan sehari-hari, banyak sekali hal yang berkaitan dengan fluida dinamis ini.
Besaran-besaran dalam fluida dinamis
Debit aliran (Q)
Jumlah volume fluida yang mengalir persatuan waktu, atau:



Dimana :
Q   =    debit aliran (m3/s)
A   =    luas penampang (m2)
V   =    laju aliran fluida (m/s)
Aliran fluida sering dinyatakan dalam debit aliran
 
Dimana :
Q   =    debit aliran (m3/s)
V   =    volume (m3)
t     =    selang waktu (s)
  


Persamaan Kontinuitas
Air yang mengalir di dalam pipa air dianggap mempunyai debit yang sama di sembarang titik. Atau jika ditinjau 2 tempat, maka:
Debit aliran 1 = Debit aliran 2, atau :

Hukum Bernoulli
Hukum Bernoulli adalah hukum yang berlandaskan pada hukum kekekalan energi yang dialami oleh aliran fluida. Hukum ini menyatakan bahwa jumlah tekanan (p), energi kinetik per satuan volume, dan energi potensial per satuan volume memiliki nilai yang sama pada setiap titik sepanjang suatu garis arus. Jika dinyatakan dalam persamaan menjadi :

Dimana :
p   = tekanan air (Pa)
v    = kecepatan air (m/s)
g   = percepatan gravitasi
h    = ketinggian air

Penerapan dalam teknologi
Pesawat Terbang
Gaya angkat pesawat terbang bukan karena mesin, tetapi pesawat bisa terbang karena memanfaatkan hukum bernoulli yang membuat laju aliran udara tepat di bawah sayap, karena laju aliran di atas lebih besar maka mengakibatkan tekanan di atas pesawat lebih kecil daripada tekanan pesawat di bawah.

Akibatnya terjadi gaya angkat pesawat dari hasil selisih antara tekanan di atas dan di bawah di kali dengan luas efektif pesawat.

Keterangan:              
ρ  = massa jenis udara (kg/m3)
va= kecepatan aliran udara pada bagian atas pesawat (m/s)
vb= kecepatan aliran udara pada bagian bawah pesawat (m/s)
 F = Gaya angkat pesawat (N)

Penyemprot Parfum dan Obat Nyamuk

Prinsip kerja yang dilakukan dengan menghasilkan laju yang lebih besar pada ujung atas selang botol sehingga membuat tekanan di atas lebih kecil daripada tekanan di bawah. Akibatnya cairan dalam wadah tersebut terdesak ke atas selang dan lama kelamaan akan menyembur keluar.
 
 
beberapa contoh soal :

1. Air mengalir melalui pipa mendatar dengan luas penampang pada masing-masing ujungnya 200mm2 dan 100mm2. Bila air mengalir dari panampang besar dengan kecepatan adalah 2 m/s, maka kecepatan air pada penampang kecil adalah ….
Pembahasan
Diketahui:
A1 = 200 mm2= 2.10-4m2
A2 = 100mm2= 10-4m2
v1= 2 m/s
ditanyakan v2 = …. ?
Pembahasan
Q1 = Q2
A1v1 = A2V2
v2 = A1v1/A2 = 2.10-4.2/10-4 = 4m/s

2. Azas Bernoulli dalam fluida bergerak menyatakan hubungan antara ….
Pembahasan
Dalam fluida bergerak, hubungan antara tekanan, kecepatan, dan massa jenis dinyatakan oleh Azas Bernouli.

3.Tabung setinggi 30 cm diisi penuh dengan fluida. Tentukanlah tekanan hidrostatis pada dasar tabung, jika g = 10 m/s2 dan tabung berisi dalam air:


Kunci Jawaban :
Diketahui: h = 30 cm dan g = 10 m/s2.
a. Tekanan hidrostatis pada dasar tabung yang berisi air:
Ph = ρ gh = (1.000 kg/m3) (10 m/s2) (0,3 m) = 3.000 N/m2
4. Debit air yang keluar dari pipa yang luas penampangnya 4cm2 sebesar 100 cm3/s. Kecepatan air yang keluar dari pipa tersebut adalah …. 
Pembahasan

v = Q/A = 100/4 = 25 cm/s = 0,25 m/s

5. Seekor ikan berada pada kedalaman 15 meter di bawah permukaan air.

Jika massa jenis air 1000 kg/m3 , percepatan gravitasi bumi 10 m/s2 dan tekanan udara luar 105 N/m, tentukan :
a) tekanan hidrostatis yang dialami ikan
b) tekanan total yang dialami ikan

Pembahasan
a) tekanan hidrostatis yang dialami ikan



b) tekanan total yang dialami ikan







 
;